Send to

Choose Destination
Environ Health Perspect. 1979 Aug;31:97-111.

Detection of mitotic and meiotic aneuploidy in the yeast Saccharomyces cerevisiae.


A number of genetic systems are described which involve the use of the yeast Saccharomyces cerevisiae. The systems may be used to detect the production of aneuploid cells produced during both mitotic and meiotic cell division in the presence of genetically active chemicals. During mitotic cell division, monosomic colonies (2n - 1) may be detected by plating upon selective medium. Increases in such monosomic colonies are produced by exposure of cells to a number of chemical mutagens such as ethyl methane-sulfonate and mitomycin C. More importantly, monosomic colonies are also induced by nonmutagens such as sulfacetamide and saccharin, which suggests that such chemicals are capable of inducing aneuploidy (aneugenic) in the absence of mutagenic activity. Genetic analysis of aneuploid colonies produced on nonselective medium indicate that at least a proportion of the monosomic colonies were the result of mitotic nondisjunction. During meiotic cell division, disomic cells (n + 1) produced by chromosome nondisjunction may be detected by plating on selective media. The frequency of disomic cells has been shown to increase after exposure to p-fluorophenylalanine.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center