Electromechanical Response of Mesenteric Ischemia Defined Through Simultaneous High-Resolution Bioelectrical and Video Mapping

Ann Biomed Eng. 2024 Mar;52(3):588-599. doi: 10.1007/s10439-023-03404-w. Epub 2023 Nov 14.

Abstract

Intestinal motility is governed in part by bioelectrical slow-waves and spike-bursts. Mesenteric ischemia is a substantial clinical challenge, but its electrophysiological and contractile mechanisms are not well understood. Simultaneous high-resolution bioelectrical and video mapping techniques were used to capture the changes in slow-waves, spike-bursts, and contractile activity during baseline, ischemia, and reperfusion periods. Experiments were performed on anesthetized pigs where intestinal contractions were quantified using surface strain and diameter measurements, while slow-wave and spike-bursts were quantified using frequency and amplitude. Slow-waves entrainment within the ischemic region diminished during ischemia, resulting in irregular slow-wave activity and a reduction in the frequency from 12.4 ± 3.0 cycles-per-minute (cpm) to 2.5 ± 2.7 cpm (p = 0.0006). At the end of the reperfusion period, normal slow-wave entrainment was observed at a frequency of 11.5 ± 2.9 cpm. There was an increase in spike-burst activity between the baseline and ischemia periods (1.1 ± 1.4 cpm to 8.7 ± 3.3 cpm, p = 0.0003) along with a spasm of circumferential contractions. At the end of the reperfusion period, the frequency of spike-bursts decreased to 2.7 ± 1.4 cpm, and contractions subsided. The intestine underwent tonal contraction during ischemia, with the diameter decreasing from 29.3 ± 2.6 mm to 21.2 ± 6.2 mm (p = 0.0020). At the end of the reperfusion period, the intestinal diameter increased to 27.3 ± 3.9 mm. The decrease in slow-wave activity, increase in spike-bursts, and tonal contractions can objectively identify ischemic segments in the intestine. It is anticipated that the use of electrophysiological slow-wave and spike-burst biomarkers, along with contractile measures, could identify mesenteric ischemia in surgical settings and allow an objective biomarker for successful revascularization.

Keywords: Ischemia; Motility; Reperfusion; Slow-wave; Spike-burst.

MeSH terms

  • Animals
  • Gastrointestinal Motility / physiology
  • Intestines
  • Ischemia
  • Mesenteric Ischemia*
  • Muscle Contraction
  • Swine