Differential scanning calorimetric studies of photosystem II: evidence for a structural role for cytochrome b559 in the oxygen-evolving complex

Biochemistry. 1986 Oct 7;25(20):6161-9. doi: 10.1021/bi00368a050.

Abstract

Differential scanning calorimetry (DSC) has been used to investigate the macroscopic structure of photosystem II (PS II). Five endothermic transitions, A1, A2, B, C, and D, are observed in the 30-70 degrees C temperature range and are partially assigned on the basis of heat inactivation experiments, relative peak areas, and the effect of MgCl2 on the DSC trace. We suggest that peaks C and D correspond to the denaturation of the light-harvesting chlorophyll a/b proteins and peak B to the denaturation of components critical to the electron-transport chain. In a DSC study of thylakoid membranes [Cramer, W. A., Whitmarsh, J., & Low, P. S. (1981) Biochemistry 20, 157-162], the lowest temperature shoulder was assigned to the denaturation of the oxygen-evolving complex (OEC). By correlating the temperature of heat inactivation with the temperatures of the DSC peaks of PS II in a range of detergent concentrations (causing shifts in the peak positions), we assign peak A2 to the functional denaturation of the OEC. We have used peak A2 as a new probe of the OEC and have found this peak to be sensitive to the oxidation state of cytochrome b559. Oxidation of cytochrome b559 with 1 mM ferricyanide, which has no effect on oxygen evolution activity, causes peak A2 to disappear, probably by making it too broad to observe.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Calorimetry, Differential Scanning
  • Cytochrome b Group / metabolism*
  • Oxidation-Reduction
  • Oxygen / metabolism*
  • Photosynthesis*
  • Photosystem II Protein Complex*
  • Plants / metabolism*

Substances

  • Cytochrome b Group
  • Photosystem II Protein Complex
  • cytochrome b559
  • Oxygen