Format

Send to

Choose Destination
Exp Brain Res. 1986;63(2):331-40.

Role of agonist and antagonist muscles in fast arm movements in man.

Abstract

Fast goal-directed voluntary movements of the human upper extremity are known to be associated with three distinct bursts of EMG activity in antagonistic muscles. The role of each burst (AG1, ANT, AG2) in controlling motion is not fully understood, largely because overall limb response is a complex function of the entire sequence of bursts recorded during experimental trials. In order to investigate the role of each burst of muscle activity in controlling motion, we studied fast voluntary arm movements and also developed two simulation techniques, one employing a mathematical model of the limb and the other using electrical stimulation of human arm muscles. These techniques show that two important movement parameters (peak displacement, time to reach peak displacement) are non-linear functions of the magnitude of the antagonist input (torque and stimulation voltage, respectively, in our two simulations). In the fastest movements, the agonist muscle is primarily responsible for the distance moved, while the antagonist muscle provides an effective means of reducing movement time. The third component of the triphasic pattern moderates the antagonist braking forces and redirects the movement back to the target.

PMID:
3758250
DOI:
10.1007/bf00236850
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center