Send to

Choose Destination
Eur J Cell Biol. 1986 Aug;41(2):313-25.

An electron microscopic study of the interaction in vitro of vimentin intermediate filaments with vesicles prepared from Ehrlich ascites tumor cell lipids.


The interaction of intermediate filaments prepared from pure, delipidated vimentin with vesicles obtained from Ehrlich ascites tumor (EAT) cell lipids was studied employing sucrose density gradient centrifugation in combination with electron microscopy. In negative stain electron microscopy, preformed vimentin filaments were seen in lateral association with lipid vesicles; end-on contacts of filaments with liposomes were rarely detected. When the reaction of filaments with vesicles was carried out at 0 degree C, sucrose density gradient equilibrium centrifugation of the reaction products led to the banding of relatively light filament-vesicle meshworks in clear separation from free filaments and free vesicles. With certain vimentin and lipid preparations, occasionally partial breakdown of the filaments during centrifugation and banding of vesicle-free fragments in denser regions of the sucrose gradients was observed. However, when the reaction mixtures were incubated at 37 degrees C prior to sucrose gradient analysis, all filaments were released from vesicles and totally fragmented during centrifugation. Electron microscopy showed unraveling of the filament fragments into subfilament strands. Employing lipid vesicles labeled with [3H]cholesterol, a low but significant amount of radioactivity was found to be associated with the fragments in a non-vesicular form. Filament reconstitution experiments performed in the presence of EAT cell lipids revealed an inhibitory effect of vesicles on filament assembly, particularly at lower temperatures. The mechanical labilization of the filament structure by lipid vesicles might play a role in the redistribution of intermediate filaments in the course of certain cellular processes involving turnover and fragmentation of intracellular membrane systems.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center