The protective effect of thiolutin on doxorubicin-induced H9c2 cardiomyocyte injury

J Toxicol Sci. 2023;48(8):469-479. doi: 10.2131/jts.48.469.

Abstract

The use of doxorubicin (DOX) may contribute to cardiotoxicity, limiting its clinical application. Thiolutin (THL) has been found to exert protective roles in various biological activities, while its effects on DOX-induced cardiotoxicity are still uncovered. Cell counting kit 8 assay was utilized to detect cell viability and half maximal inhibitory concentration of THL in H9c2 cardiomyocytes. The level of lactate dehydrogenase (LDH), adenosine triphosphate (ATP), interleukin (IL)-18 and IL-1 beta (IL-1β) were measured using the corresponding detection kits, and flow cytometry determined cell apoptosis rate. The reactive oxygen species (ROS) accumulation was evaluated by utilizing immunofluorescence or flow cytometry assay. The protein levels of NLR family Pyrin domain 3 (NLRP3), pro-Caspase1, cleaved-Caspase1, gasdermin D (GSDMD) and cleaved-GSDMD (GSDMD-N) in H9c2 cells were detected by immunoblotting assay. The treatment of THL reduced H9c2 cell viability in a gradient-dependent manner. THL treatment reversed the DOX-induced inhibition of proliferation, decrease of ATP, up-regulation of LDH, IL-18, IL-1β and production of ROS, activation of NLRP3 and inflammasome-mediated pyroptosis in H9c2 cells. Additionally, NLRP3 knockdown abolished the effects of THL in DOX-treated H9c2 cells remarkably. This investigation proved that THL notably ameliorated DOX-induced apoptosis, oxidative stress, and pyroptosis in H9c2 cardiomyocytes. Besides, THL effectively inactivated DOX-induced NLRP3 inflammasome in H9c2 cells. These findings revealed a promising drug to assist DOX in its anti-cancer effects and protect the heart of patients.

Keywords: Cardiotoxicity; Doxorubicin; NLRP3 inflammasome; Pyroptosis; Thiolutin.

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Cardiotoxicity
  • Cell Line
  • Doxorubicin / metabolism
  • Doxorubicin / toxicity
  • Humans
  • Inflammasomes* / metabolism
  • Myocytes, Cardiac*
  • NLR Family, Pyrin Domain-Containing 3 Protein / genetics
  • NLR Family, Pyrin Domain-Containing 3 Protein / metabolism
  • Reactive Oxygen Species / metabolism

Substances

  • Inflammasomes
  • NLR Family, Pyrin Domain-Containing 3 Protein
  • Reactive Oxygen Species
  • acetopyrrothine
  • Doxorubicin
  • Adenosine Triphosphate