Format

Send to

Choose Destination
J Reprod Fertil. 1986 Jul;77(2):425-34.

Lipid analysis of immature pig oocytes.

Abstract

The detailed analysis of the lipid composition of immature pig oocytes represents the first such study carried out on mammalian eggs. In order to undertake a large scale lipid analysis using conventional extraction and chromatographic techniques a procedure for mass harvesting relatively large numbers of pig oocytes (200-300 oocytes/ovary) was developed. The study revealed that triacylglycerol was the major lipid component (100.71 nmol/mg protein) followed by cholesterol (32.71 nmol/mg protein). Phosphatidylcholine constituted the major phospholipid component (27.83 nmol/mg protein). Pig oocytes contained relatively low proportions of phosphatidylethanolamine (16.41% total phospholipid) and relatively high proportions of lysophosphatidylcholine (4.68% total phospholipid). The free fatty acid pattern was strikingly similar to the fatty acid composition of phosphatidylcholine. This observation, in conjunction with the observed high levels of lysophosphatidylcholine and the low ratio of phosphatidylethanolamine to phosphatidylcholine, suggests a fast rate of phospholipid turnover in the immature pig oocyte. Analysis of fatty acids esterified to the individual phospholipids and neutral lipids has shown that in all the classes examined, particularly in the neutral lipid fractions, there are high levels of the saturated fatty acid palmitic acid (16:0) and the monounsaturated fatty acid oleic acid (18:1). Triacylglycerol, free fatty acids and most of the phospholipids, particularly phosphatidylethanolamine, are considerably enriched in n-6 polyunsaturated fatty acids, specifically linoleic (18:2), arachidonic (20:4) and adrenic (22:4) acids. This may indicate an ability of oocytes to synthesize prostaglandins and leukotrienes. The results show that the lipid environment of the immature pig oocyte may be adapted to the highly specialized requirements of the cell, promoting growth and development with a potential role in the regulation of maturation.

PMID:
3735242
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center