Format

Send to

Choose Destination
Biophys J. 1986 Jun;49(6):1119-30.

Transmission electron microscopy observations of sonication-induced changes in liposome structure.

Abstract

Freeze-fracture Transmission Electron Microscopy (TEM) was used to show that sonication does not homogeneously disrupt liposome dispersions to form vesicles. Many large multilamellar particles remain intact after sonication and small, unilamellar vesicles are present after just 10 s of exposure. Small vesicles appear to coexist with large liposomes even before sonication. The mechanical and thermal stresses induced by sonication nucleate liquid crystalline defects in the liposomes, including edge and screw dislocations and +1 disclinations, but the Dupin cyclide structure of unsonicated liposomes is still recognizable in the larger particles after sonication. Defects in the bilayer organization may provide pathways for enhanced transport within the liposome, as well as from the liposome interior to exterior. A screw dislocation-catalyzed mechanism of liposome-to-vesicle conversion is proposed that accounts for the TEM observations.

PMID:
3719073
PMCID:
PMC1329696
DOI:
10.1016/S0006-3495(86)83741-9
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center