Polycaprolactone Electrospun Nanofiber Membrane with Skin Graft Containing Collagen and Bandage Containing MgO Nanoparticles for Wound Healing Applications

Polymers (Basel). 2023 Apr 24;15(9):2014. doi: 10.3390/polym15092014.

Abstract

The objective of this study was to create a nanofiber-based skin graft with an antimicrobial bandage that could accelerate the healing of an open wound while minimizing infection. To this end, we prepared a bi-layer construct where the top layer acts as bandage, and the bottom layer acts as a dermal equivalent graft. A collagen (CG) gel was combined without and with an electrospun polycaprolactone (PCL) membrane to prepare CG and CG-PCL dermal equivalent constructs. The antibacterial properties of PCL with and without an antibacterial agent (MgO nanoparticles) against Staphylococcus aureus (ATCC 6538) was also examined. Human dermal fibroblasts were cultured in each construct to make the dermal equivalent grafts. After culturing, keratinocytes were plated on top of the tissues to allow growth of an epidermis. Rheological and durability tests were conducted on in vitro dermal and skin equivalent cultures, and we found that PCL significantly affects CG-PCL graft biological and mechanical strength (rheology and durability). PCL presence in the dermal equivalent allowed sufficient tension generation to activate fibroblasts and myofibroblasts in the presence of transforming growth factor-beta. During culture of the skin equivalents, optical coherence tomography (OCT) showed layers corresponding to dermal and epidermal compartments in the presence or absence of PCL; this was confirmed after fixed specimens were histologically sectioned and stained. MgO added to PCL showed antibacterial activity against S. aureus. In vivo animal studies using a rat skin model showed that a polycaprolactone nanofiber bandage containing a type I collagen skin graft has potential for wound healing applications.

Keywords: antibacterial; bandage; collagen; polycaprolactone; skin graft; wound healing.

Grants and funding

This research was funded by UCO ORSP on-campus faculty grant, OHIP student RCSA grants, and CURE-STEM awards from the College of Math and Science, Office of High Impact Practices, and Office of Research and Grants at the University of Central Oklahoma. This project was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award P20GM103447 through the Oklahoma INBRE program. The content in this publication is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.