Send to

Choose Destination
See comment in PubMed Commons below
Nature. 1986 Jun 5-11;321(6070):620-5.

Structure of DNase I at 2.0 A resolution suggests a mechanism for binding to and cutting DNA.


Bovine pancreatic deoxyribonuclease I (DNase I), an endonuclease that degrades double-stranded DNA in a nonspecific but sequence-dependent manner, has been used as a biochemical tool in various reactions, in particular as a probe for the structure of chromatin and for the helical periodicity of DNA on the nucleosome and in solution. Limited digestion by DNase I, termed DNase I 'footprinting', is routinely used to detect protected regions in DNA-protein complexes. Recently, we have solved the three-dimensional structure of this glycoprotein (relative molecular mass 30,400) by X-ray structure analysis at 2.5 A resolution and have subsequently refined it crystallographically at 2.0 A. Based on the refined structure and the binding of Ca2+-thymidine 3',5'-diphosphate (Ca-pTp) at the active site, we propose a mechanism of action and present a model for the interaction of DNase I with double-stranded DNA that involves the binding of an exposed loop region in the minor groove of B-DNA and electrostatic interactions of phosphates from both strands with arginine and lysine residues on either side of this loop. We explain DNase I cleavage patterns in terms of this model and discuss the consequences of the extended DNase I-DNA contact region for the interpretation of DNase I footprinting results.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center