Send to

Choose Destination
J Neurochem. 1986 Jul;47(1):213-22.

Reevaluation of the role of gangliosides as receptors for tetanus toxin.


Binding of tetanus toxin to rat brain membranes was of lower affinity and capacity when binding was determined in 150 mM NaCl, 50 mM Tris-HCl (pH 7.4) than in 25 mM Tris-acetate (pH 6.0). Binding under both conditions was reduced by treating the membranes with neuraminidase. Pronase treatment, however, reduced toxin binding only in the Tris-saline buffer (pH 7.4). In addition, the concentration of gangliosides required to inhibit toxin binding was 100-fold higher in Tris-saline compared to Tris-acetate buffer. The toxin receptors in the membranes were analyzed by ligand blotting techniques. Membrane components were dissolved in sodium dodecyl sulfate, separated by polyacrylamide gel electrophoresis, and transferred to nitrocellulose sheets, which were overlaid with 125I-labeled toxin. Tetanus toxin bound only to material that migrated in the region of the dye front and was extracted with lipid solvents. Gangliosides isolated from the lipid extracts or other sources were separated by TLC on silica gel and the chromatograms were overlaid with labeled tetanus toxin. The toxin bound to areas where the major rat brain gangliosides migrated. When equimolar amounts of different purified gangliosides were applied to the chromatogram, binding of the toxin was in the order GD1b approximately equal to GT1b approximately equal to GQ1b greater than GD2 greater than GD3 much greater than GD1a approximately equal to GM1. Thus, the toxin appears to have the highest affinity for gangliosides with a disialyl group linked to the inner galactosyl residue. When binding of tetanus toxin to transfers and chromatograms was determined in the Tris-saline buffer (pH 7.4), the toxin bound to the same components but the extent of binding was markedly reduced compared with the low-salt and -pH conditions. Our results indicate that the interaction of tetanus toxin with rat brain membranes and gangliosides is greatly reduced under more physiological conditions of salt and pH and raise the possibility that other membrane components such as sialoglycoproteins may be receptors for the toxin under these conditions.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center