Prolyl isomerase Pin1 promotes extracellular matrix production in hepatic stellate cells through regulating formation of the Smad3-TAZ complex

Exp Cell Res. 2023 Apr 15;425(2):113544. doi: 10.1016/j.yexcr.2023.113544. Epub 2023 Mar 9.

Abstract

Hepatic stellate cells (HSCs) produce extracellular matrixes (ECMs), such as collagen and fibronectin, in response to stimulation with transforming growth factor β (TGFβ). The massive ECM accumulation in the liver due to HSCs causes fibrosis which eventually leads to hepatic cirrhosis and hepatoma development. However, details of the mechanisms underlying continuous HSC activation are as yet poorly understood. We thus attempted to elucidate the role of Pin1, one of the prolyl isomerases, in the underlying mechanism(s), using the human HSC line LX-2. Treatment with Pin1 siRNAs markedly alleviated the TGFβ-induced expressions of ECM components such as collagen 1a1/2, smooth muscle actin and fibronectin at both the mRNA and the protein level. Pin1 inhibitors also decreased the expressions of fibrotic markers. In addition, it was revealed that Pin1 associates with Smad2/3/4, and that four Ser/Thr-Pro motifs in the linker domain of Smad3 are essential for binding with Pin1. Pin1 significantly regulated Smad-binding element transcriptional activity without affecting Smad3 phosphorylations or translocation. Importantly, both Yes-associated protein (YAP) and WW domain-containing transcription regulator (TAZ) also participate in ECM induction, and upregulate Smad3 activity rather than TEA domain transcriptional factor transcriptional activity. Although Smad3 interacts with both TAZ and YAP, Pin1 facilitates the Smad3 association with TAZ, but not that with YAP. In conclusion, Pin1 plays pivotal roles in ECM component productions in HSCs through regulation of the interaction between TAZ and Smad3, and Pin1 inhibitors may have the potential to ameliorate fibrotic diseases.

Keywords: Fibrosis; Hepatic stellate cells; Pin1; Smad3; TAZ.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Extracellular Matrix / metabolism
  • Fibronectins* / genetics
  • Fibronectins* / metabolism
  • Fibrosis
  • Hepatic Stellate Cells / metabolism
  • Humans
  • Liver Cirrhosis / pathology
  • NIMA-Interacting Peptidylprolyl Isomerase / genetics
  • NIMA-Interacting Peptidylprolyl Isomerase / metabolism
  • Peptidylprolyl Isomerase* / genetics
  • Peptidylprolyl Isomerase* / metabolism
  • Smad3 Protein / genetics
  • Smad3 Protein / metabolism
  • Transforming Growth Factor beta / metabolism
  • Transforming Growth Factor beta1 / genetics
  • Transforming Growth Factor beta1 / metabolism

Substances

  • Peptidylprolyl Isomerase
  • Fibronectins
  • Transforming Growth Factor beta
  • Transforming Growth Factor beta1
  • Smad3 Protein
  • SMAD3 protein, human
  • PIN1 protein, human
  • NIMA-Interacting Peptidylprolyl Isomerase