A review related to MXene preparation and its sensor arrays of electronic skins

Analyst. 2023 Jan 31;148(3):435-453. doi: 10.1039/d2an01143c.

Abstract

MXenes have been flourishing over the last decade as a high-performance 2D material, which combines the advantages of high electrical conductivity, photothermal conversion, and easy dispersion. They have been used to create soft, highly conductive, self-healing, and tactile-simulating electronic skins (E-skins). However, these E-skins remain generally limited to one or two functions with a complex preparation process. Next-generation E-skins necessitate not only large-scale fabrication using simple and fast methods but also the integration of multiple sensing functions and signal analysis components in order to provide functionality that was not unattainable in the past. Starting with the synthesis of pure MXenes, we walk through the steps of designing MXene sensors, integrating electronic skin arrays, and determining the function of MXene-based electronic skins. We also summarise the problems with existing MXene-based E-skins and possible futuristic directions.

Publication types

  • Review