Fast and Versatile Functionalization of Glassy Carbon

Langmuir. 2022 Nov 15;38(45):13814-13821. doi: 10.1021/acs.langmuir.2c01964. Epub 2022 Nov 3.

Abstract

A rapid procedure for the functionalization of glassy carbon surfaces (GCSs) is disclosed. A three-step sequence of bromomethylation, azide displacement, and copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) allows ethynylated molecules to be attached covalently to the carbon surface through a methylene functional group. Redox-active ethynyl ferrocene and [RuII(Cl)(DMSO)(ethynyl-TPA)]1+ (DMSO = dimethylsulfoxide; TPA = tris(2-pyridylmethyl)amine) are attached with high coverages as assessed by cyclic voltammetry, and the elemental composition of the surface is confirmed by X-ray photoelectron spectroscopy. In less than 1 h, surface coverages of 1 × 1014 molecules/cm2 are possible that exhibit good durability in both acidic and basic media. Attached [RuII(Cl)(DMSO)(ethynyl-TPA)]1+ catalytically oxidizes alcohols, yet the currents and potentials are less impressive compared to an attachment without the intervening methylene group. The advantages of this covalent attachment procedure for GCSs are its short reaction times, mild reaction conditions, and the use of standard laboratory reagents and glassware, allowing for many types of ethynylated molecules to be attached rapidly to the surface.