Format

Send to

Choose Destination
Am J Physiol. 1987 Sep;253(3 Pt 1):G390-6.

Fructose prevents hypoxic cell death in liver.

Abstract

Perfusion of livers from fasted rats with nitrogen-saturated buffer caused hepatocellular damage within 30 min. Lactate dehydrogenase (LDH) was released at maximal rates of approximately 300 U . g-1 . h-1 under these conditions, and virtually all cells in periportal and pericentral regions of the liver lobule were stained with trypan blue. Infusion of glucose, xylitol, sorbitol, or mannitol (20 mM) did not appreciably change the time course or extent of damage due to perfusion with nitrogen-saturated perfusate. However, fructose (20 mM) completely prevented damage assessed by LDH release, trypan blue uptake, and ultrastructural changes for at least 2 h of perfusion. Neither glucose, xylitol, sorbitol, nor mannitol (20 mM) increased lactate formation above basal levels during hypoxia. On the other hand, fructose (0.4-20 mM) caused a concentration-dependent increase in lactate formation that reached maximal rates of approximately 180 mumol . g-1 . h-1. The dose-dependent increase in glycolytic lactate production from fructose correlated well with cellular protection reflected by decreases in LDH release. ATP:ADP ratios were also increased from 0.4 to 1.8 in a dose-dependent manner by fructose. The results indicate that fructose protects the liver against hypoxic cell death by the glycolytic production of ATP in the absence of oxygen.

PMID:
3631273
DOI:
10.1152/ajpgi.1987.253.3.G390
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center