Interplay between Artificial Intelligence and Biomechanics Modeling in the Cardiovascular Disease Prediction

Biomedicines. 2022 Sep 1;10(9):2157. doi: 10.3390/biomedicines10092157.

Abstract

Cardiovascular disease (CVD) is the most common cause of morbidity and mortality worldwide, and early accurate diagnosis is the key point for improving and optimizing the prognosis of CVD. Recent progress in artificial intelligence (AI), especially machine learning (ML) technology, makes it possible to predict CVD. In this review, we first briefly introduced the overview development of artificial intelligence. Then we summarized some ML applications in cardiovascular diseases, including ML-based models to directly predict CVD based on risk factors or medical imaging findings and the ML-based hemodynamics with vascular geometries, equations, and methods for indirect assessment of CVD. We also discussed case studies where ML could be used as the surrogate for computational fluid dynamics in data-driven models and physics-driven models. ML models could be a surrogate for computational fluid dynamics, accelerate the process of disease prediction, and reduce manual intervention. Lastly, we briefly summarized the research difficulties and prospected the future development of AI technology in cardiovascular diseases.

Keywords: artificial intelligence; cardiovascular biomechanics modeling; cardiovascular diseases; machine learning.

Publication types

  • Review