SPECT imaging of226Ac as a theranostic isotope for225Ac radiopharmaceutical development

Phys Med Biol. 2022 Sep 12;67(18). doi: 10.1088/1361-6560/ac8b5f.

Abstract

Objective. The development of alpha-emitting radiopharmaceuticals using225Ac (t½ = 9.92 d) benefits from the quantitative determination of its biodistribution and is not always easy to directly measure. An element-equivalent matched-pair would allow for more accurate biodistribution and dosimetry estimates.226Ac (t½ = 29.4 h) is a candidate isotope forin vivoimaging of preclinical225Ac radiopharmaceuticals, given its 158 keV and 230 keV gamma emissions making it suitable for quantitative SPECT imaging. This work aimed to conduct a performance assessment for226Ac imaging and presents the first-ever226Ac SPECT images.Approach. To establish imaging performance with regards to contrast and noise, image quality phantoms were scanned using a microSPECT/CT system. To assess the resolution, a hot rod phantom with cylindrical rods with diameters between 0.85 and 1.70 mm was additionally imaged. Two collimators were evaluated: a high-energy ultra-high resolution (HEUHR) collimator and an extra ultra-high sensitivity (UHS) collimator. Images were reconstructed from two distinct photopeaks at 158 keV and 230 keV.Main results. The HEUHR SPECT image measurements of high activity concentration regions were consistent with values determined independently via gamma spectroscopy, within 9% error. The lower energy 158 keV photopeak images demonstrated slightly better contrast recovery. In the resolution phantom, the UHS collimator only resolved rods ≥1.30 mm and ≥1.50 mm for the 158 keV and 230 keV photopeaks, respectively, while the HEUHR collimator clearly resolved all rods, with resolution <0.85 mm.Significance. Overall, the feasibility of preclinical imaging with226Ac was demonstrated with quantitative SPECT imaging achieved for both its 158 keV and 230 keV photopeaks. The HEUHR collimator is recommended for imaging226Ac activity distributions in small animals due to its resolution <0.85 mm. Future work will explore the feasibility of using226Ac both as an element-equivalent isotope for225Ac radiopharmaceuticals, or as a standalone therapeutic isotope.

Keywords: SPECT; actinium-225; actinium-226; preclinical imaging; radiopharmaceutical therapy; targeted alpha therapy; theranostic pair.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Isotopes
  • Phantoms, Imaging
  • Precision Medicine*
  • Radiopharmaceuticals*
  • Tissue Distribution
  • Tomography, Emission-Computed, Single-Photon / methods

Substances

  • Isotopes
  • Radiopharmaceuticals