Evaluation of late arterial acquisition and image quality after gadoxetate disodium injection using the CDT-VIBE sequence

Sci Rep. 2022 Jul 6;12(1):11445. doi: 10.1038/s41598-022-15108-7.

Abstract

To explore the applicability of multi-arterial phase imaging technique in gadoxetate disodium-enhanced MRI. We studied 140 consecutive patients with suspected liver lesions who underwent gadoxetate disodium-enhanced MRI before surgery. All patients were randomized into three groups: group A (n = 50) was examined with VIBE-based single-artery phase imaging, group B (n = 44) with StarVIBE, and group C (n = 46) with CAIPIRINHA-Dixon-TWIST-VIBE (CDT-VIBE)-based multi-artery phase imaging. We evaluated the display rate of late arterial images and image quality in arterial phase images. We performed a study of 140 consecutive patients suspected with liver lesions who received gadoxetate disodium-enhanced MRI examination before surgery. All patients were randomly divided into three groups: group A (n = 50) was examined with single arterial phase imaging based on VIBE, group B (n = 44) was based on StarVIBE and group C (n = 46) was analyzed with multi-arterial phase imaging based on CAIPIRINHA-Dixon-TWIST-VIBE (CDT-VIBE). We evaluated the display rate of late arterial images and the image quality of dynamically enhanced images. Both radiologists had an almost perfect agreement (Kappa value > 0.8) in the assessment of late arterial and image quality. For late arterial acquisition, group C was superior to groups A and B (x2 = 18.940, P < 0.05); The image of phase 4 had the highest display rate in the late artery phase. For arterial phase image quality, there was no difference between groups A, B and C at five phases (H = 10.481, P = 0.106); and the best image quality score was lower in group C than in groups A and B (H = 8.573, P = 0.014).For the quality of the late arterial images, there was a statistical difference between the best images in groups A, B and C (H = 6.619, P = 0.037), and the images in group C were significantly better than those in group A (P.adj < 0.05). By applying multi-arterial phase acquisition based on CDT-VIBE, gadoxetate disodium-enhanced MRI scanning can obtain a better late arterial phase and provide high-quality images with fewer motion artifacts.

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arteries
  • Contrast Media*
  • Gadolinium DTPA
  • Humans
  • Liver Neoplasms* / diagnostic imaging

Substances

  • Contrast Media
  • gadolinium ethoxybenzyl DTPA
  • Gadolinium DTPA