Highly Sensitive Electrochemical Immunosensor Platforms for Dual Detection of SARS-CoV-2 Antigen and Antibody based on Gold Nanoparticle Functionalized Graphene Oxide Nanocomposites

ACS Appl Bio Mater. 2022 May 16;5(5):2421-2430. doi: 10.1021/acsabm.2c00301. Epub 2022 May 6.

Abstract

In this work, we report a facile synthesis of graphene oxide-gold (GO-Au) nanocomposites by electrodeposition. The fabricated electrochemical immunosensors are utilized for the dual detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen and SARS-CoV-2 antibody. The GO-Au nanocomposites has been characterized by UV-vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) for its biosensing properties. The linear detection range of the SARS-CoV-2 antigen immunosensor is 10.0 ag mL-1 to 50.0 ng mL-1, whereas that for the antibody immunosensor ranges from 1.0 fg mL-1 to 1.0 ng mL-1. The calculated limit of detection (LOD) of the SARS-CoV-2 antigen immunosensor is 3.99 ag mL-1, and that for SARS-CoV-2 antibody immunosensor is 1.0 fg mL-1 with high sensitivity. The validation of the immunosensor has also been carried out on patient serum and patient swab samples from COVID-19 patients. The results suggest successful utilization of the immunosensors with a very low detection limit enabling its use in clinical samples. Further work is needed for the standardization of the results and translation in screen-printed electrodes for use in portable commercial applications.

Keywords: GO−Au nanocomposites; SARS-CoV-2 antibody; SARS-CoV-2 antigen; electrochemical immunosensor; electrodeposition.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antibodies
  • Biosensing Techniques* / methods
  • COVID-19* / diagnosis
  • Gold / chemistry
  • Graphite
  • Humans
  • Immunoassay / methods
  • Metal Nanoparticles* / chemistry
  • Nanocomposites* / chemistry
  • SARS-CoV-2

Substances

  • Antibodies
  • graphene oxide
  • Gold
  • Graphite