Format

Send to

Choose Destination
See comment in PubMed Commons below
Arch Biochem Biophys. 1986 Apr;246(1):306-20.

Effect on gluconeogenesis of mutants blocking two mitochondrial transport systems in the yeast Saccharomyces cerevisiae.

Abstract

Two mutants of Saccharomyces cerevisiae, ccr1 and tpy1, have been found to interfere with the transport of small molecules across the inner mitochondrial membrane. Both also have the effect of interfering with the synthesis of a number of cytoplasmically located enzymes involved in gluconeogenesis, even when the cells are released from glucose repression. The ccr1 mutant, defective in the transport of dicarboxylic acids across the inner membrane, represses the synthesis of gluconeogenic enzymes almost totally, but synthesis can be induced on complete medium without a carbon source. This mutant has low levels of intracellular malate under all growth conditions tested. The tpy1 mutant, defective in the transport of pyruvate across the inner membrane, shows repression of gluconeogenesis enzymes under some growth conditions, particularly high levels of ethanol in the medium. These conditions also lead to low levels of malate in the cells. Intracellular levels of malate in these mutants, and in the wild type, are correlated with the levels of gluconeogenic enzymes present. The ability of isolated mutant mitochondria to phosphorylate ADP is shown to be consistent with the interpretation that they are defective in inner membrane transport, although as yet no evidence is available that these defects are the primary lesions in the two mutants. The data are consistent with two general models. In one, the exhaustion of an extramitochondrial corepressor or introduction of a coinducer by mitochondrial activity triggers the induction of gluconeogenic enzyme synthesis. In the second, the mitochondria themselves trigger this induction, but only when the tricarboxylic acid cycle is able to operate at a high level.

PMID:
3516073
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center