Send to

Choose Destination
Fed Proc. 1978 Jun;37(8):2127-31.

Ionic mechanisms of pacemaker activity in cardiac Purkinje fibers.


Rhythmic activity in cardiac Purkinje fibers can be analyzed by using the voltage clamp technique to study pacemaker currents. In normally polarized preparations, pacemaker activity can be generated by two distinct ionic mechanisms. The standard pacemaker potential (phase 4 depolarization) involves a slow potassium current, IK2. Following action potential repolarization, the IK2 channels slowly deactivate and thus unmask a steady background inward current. The resulting net inward current causes the slow pacemaker depolarization. Epinephrine accelerates the diastolic depolarization by promoting more complete and more rapid deactivation of IK2 over the pacemaker range of potentials. The catecholamine acts rather selectively on the voltage dependence of the gating mechanism, without altering the basic character of the pacemaker process. The nature of the pacemaker depolarization is altered by intoxication with high concentrations of cardiac glycosides or aglycones. These compounds promote spontaneous impulses in Purkinje fibers by a mechanism that supersedes the ordinary IK2 pacemaker. The digitalis-induced depolarization is generated by a transient inward current that is either absent or very small in untreated preparations. The transient inward current is largely carried by sodium ions. Its unusual time course probably reflects an underlying subcellular event, the oscillatory release of calcium ions from intracellular stores.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center