Format

Send to

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 1978 Apr;134(1):48-59.

Tryptophan biosynthesis in Saccharomyces cerevisiae: control of the flux through the pathway.

Abstract

Enzyme derepression and feedback inhibition of the first enzyme are the regulatory mechanisms demonstrated for the tryptophan pathway in Saccharomyces cerevisiae. The relative contributions of the two mechanisms to the control of the flux through the pathway in vivo were analyzed by (i) measuring feedback inhibition of anthranilate synthase in vivo, (ii) determining the effect of regulatory mutations on the level of the tryptophan pool and the flux through the pathway, and (iii) varying the gene dose of individual enzymes of the pathway at the tetraploid level. We conclude that the flux through the pathway is adjusted to the rate of protein synthesis by means of feedback inhibition of the first enzyme by the end product, tryptophan. The synthesis of the tryptophan enzymes could not be repressed below a basal level by tryptophan supplementation of the media. The enzymes are present in excess. Increasing or lowering the concentration of individual enzymes had no noticeable influencing on the overall flux to tryptophan. The uninhibited capacity of the pathway could be observed both upon relieving feedback inhibition by tryptophan limitation and in feedback-insensitive mutants. It exceeded the rate of consumption of the amino acid on minimal medium by a factor of three. Tryptophan limitation caused derepression of four of the five tryptophan enzymes and, as a consequence, led to a further increase in the capacity of the pathway. However, because of the large reserve capacity of the "repressed" pathway, tryptophan limitation could not be imposed on wild-type cells without resorting to the use of analogs. Our results, therefore, suggest that derepression does not serve as an instrument for the specific regulation of the flux through the tryptophan pathway.

PMID:
348687
PMCID:
PMC222216
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center