Flavonoid fractions of diosmin and hesperidin mitigate lead acetate-induced biochemical, oxidative stress, and histopathological alterations in Wistar rats

Toxicol Res. 2021 Apr 29;37(4):473-484. doi: 10.1007/s43188-020-00084-9. eCollection 2021 Oct.

Abstract

This study aims at investigating the protective effects of flavonoid fractions of diosmin and hesperidin in mitigating sub-chronic lead acetate-induced biochemical, oxidative stress, and histopathological alterations in adult male Wistar rats. Forty animals were randomly assigned into five groups, each consisting of eight animals. Group I animals was treated with deionised water only, group II, IV, and V were administered lead acetate 90 mg/Kg body weight (1/20th of the LD50), groups III, and IV was administered Daflon (100 mg/Kg), while group V was administered Daflon (200 mg/Kg), 30 min prior treatment with lead acetate. All treatments lasted for 42 days. Blood lead levels, electrolyte parameters, zinc protoporphyrin (ZPP) levels, activities of antioxidant enzymes, and histopathology of vital organs, were evaluated following standard practice. Sub-chronic lead acetate exposure induced a decrease in levels of serum electrolytes, and activities of antioxidant enzymes, while blood lead levels, ZPP, and malondialdehyde levels were increased. Lead exposure also instigated marked variation in histopathology of vital organs. Conversely, co-treatment with graded doses of daflon improved the levels of blood lead, electrolytes, ZPP, activities of antioxidant enzymes, and histopathology of vital organs. Data obtained from the current study indicate that rats exposed to sub-chronic doses of lead acetate show increased blood lead levels, electrolyte imbalance, alongside impairment in ZPP levels, activities of antioxidant enzymes, and histopathology, while pretreatment using daflon mitigated the ensued perturbations. This, therefore, suggests that consumption of foods enriched with flavonoid fractions of diosmin and hesperidin may be beneficial for individuals inhabiting lead-polluted environments.

Keywords: Biochemical; Diosmin; Flavonoids; Hesperidin; Oxidative stress; Zinc protoporphyrin.