A retrospective study on disease management in children and adolescents with phenylketonuria during the Covid-19 pandemic lockdown in Austria

Orphanet J Rare Dis. 2021 Aug 19;16(1):367. doi: 10.1186/s13023-021-01996-x.

Abstract

Background: In classical phenylketonuria (PKU) phenylalanine (Phe) accumulates due to functional impairment of the enzyme phenylalanine hydroxylase caused by pathogenic variants in the PAH gene. PKU treatment prevents severe cognitive impairment. Blood Phe concentration is the main biochemical monitoring parameter. Between appointments and venous blood sampling, Austrian PKU patients send dried blood spots (DBS) for Phe measurements to their centre. Coronavirus disease-19 (COVID-19), caused by the SARS CoV-2 virus, was classified as a pandemic by the World Health Organization in March 2020. In Austria, two nationwide lockdowns were installed during the first and second pandemic wave with variable regional and national restrictions in between. This retrospective questionnaire study compared the frequency of Phe measurements and Phe concentrations during lockdown with the respective period of the previous year in children and adolescents with PKU and explored potential influencing factors.

Results: 77 patients (30 female, 47 male; mean age 12.4 [8-19] years in 2020) from five centres were included. The decline of venous samples taken on appointments in 2020 did not reach significance but the number of patients with none or only one DBS tripled from 4 (5.2%) in 2019 to 12 (15.6%) in 2020. Significantly more patients had a decline than a rise in the number of DBS sent in between 2019 and 2020 (p < 0.001; Chi2 = 14.79). Especially patients ≥ 16 years sent significantly less DBS in 2020 (T = 156, p = 0.02, r = 0.49). In patients who adhered to DBS measurements, Phe concentrations remained stable. Male or female sex and dietary only versus dietary plus sapropterin treatment did not influence frequency of measurements and median Phe.

Conclusion: During the COVID pandemic, the number of PKU patients who stopped sending DBS to their metabolic centre increased significantly, especially among those older than 16 years. Those who kept up sending DBS maintained stable Phe concentrations. Our follow-up system, which is based on DBS sent in by patients to trigger communication with the metabolic team served adherent patients well. It failed, however, to actively retrieve patients who stopped or reduced Phe measurements.

Keywords: Adherence; Health system resources; Patient self-management.

MeSH terms

  • Adolescent
  • Austria
  • COVID-19*
  • Child
  • Communicable Disease Control
  • Disease Management
  • Female
  • Humans
  • Male
  • Pandemics
  • Phenylketonurias* / epidemiology
  • Retrospective Studies
  • SARS-CoV-2