Format

Send to

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 1987 Dec 5;198(3):533-46.

Molecular dynamics simulations of "loop closing" in the enzyme triose phosphate isomerase.

Author information

1
Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco 94143.

Abstract

We present molecular dynamics simulations on the active site region of dimeric triose phosphate isomerase (TIM) using the co-ordinates of native chicken muscle TIM as a starting point and performing simulations with no substrate, with dihydroxyacetone phosphate (DHAP), the natural substrate, and with dihydroxyacetone sulfate (DHAS), a substrate analog. Whereas most of the protein moves less than 1 A during the simulation, some residues in the active site loop move more than 8 A during the 10.5 picoseconds of dynamics for each of the simulations. Most interestingly, the nature of the loop motion depends on the substrate, with the largest motion found in the presence of DHAP, and only in the presence of DHAP does the loop move to "close off" the active site pocket. The final structure found for the DHAP-chicken TIM complex is qualitatively similar to that described by Alber et al. for DHAP-yeast TIM. Simulations on the monomeric protein gives insight into why the molecule is active only as a dimer.

PMID:
3430618
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center