Format

Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol. 1988 Sep;255(3 Pt 2):F479-85.

Effect of systemic pH on pHi and lactic acid generation in exhaustive forearm exercise.

Author information

1
Kantonsspital, University of Basel, Switzerland.

Abstract

To investigate whether changes in systemic pH affect intracellular pH (pHi), energy-rich phosphates, and lactic acid generation in muscle, eight normal volunteers performed exhaustive forearm exercise with arterial blood flow occluded for 2 min on three occasions. Subjects ingested 4 mmol/kg NH4Cl (acidosis; A) or NaHCO3 (alkalosis; B) or nothing (control; C) 3 h before the exercise. Muscle pHi and phosphocreatine (PCr) content were measured with 31P-nuclear magnetic resonance (31P-NMR) spectroscopy during exercise and recovery. Lactate output during 0.5-7 min of recovery was calculated as deep venous-arterial concentration differences times forearm blood flow. Before exercise, blood pH and bicarbonate were lower in acidosis (7.303 +/- 0.009, 18.6 +/- 0.5 meq/l) than alkalosis (7.457 +/- 0.010, 32.2 +/- 0.7 meq/l) and intermediate in control (7.389 +/- 0.007, 25.3 +/- 0.6 meq/l). Lactic acid output during recovery was less with A (245 +/- 39 mumol/100 ml) than B (340 +/- 55 mumol/100 ml) (P less than 0.05) and intermediate in C (293 +/- 31 mumol/100 ml). PCr utilization and resynthesis were not affected by extracellular pH changes. pHi did not differ before exercise (A, 7.04 +/- 0.01; B, 7.09 +/- 0.01; C, 7.06 +/- 0.01) or at its end (A, 6.28 +/- 0.07; B, 6.28 +/- 0.11; C, 6.31 +/- 0.09). Hence systemic acidosis inhibited and alkalosis stimulated lactic acid output. These findings suggest that systemic pH regulates cellular acid production, protecting muscle pH, at the expense of energy availability.

PMID:
3414804
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center