A hindbrain dopaminergic neural circuit prevents weight gain by reinforcing food satiation

Sci Adv. 2021 May 26;7(22):eabf8719. doi: 10.1126/sciadv.abf8719. Print 2021 May.

Abstract

The neural circuitry mechanism that underlies dopaminergic (DA) control of innate feeding behavior is largely uncharacterized. Here, we identified a subpopulation of DA neurons situated in the caudal ventral tegmental area (cVTA) directly innervating DRD1-expressing neurons within the lateral parabrachial nucleus (LPBN). This neural circuit potently suppresses food intake via enhanced satiation response. Notably, this cohort of DAcVTA neurons is activated immediately before the cessation of each feeding bout. Acute inhibition of these DA neurons before bout termination substantially suppresses satiety and prolongs the consummatory feeding. Activation of postsynaptic DRD1LPBN neurons inhibits feeding, whereas genetic deletion of Drd1 within the LPBN causes robust increase in food intake and subsequent weight gain. Furthermore, the DRD1LPBN signaling manifests the central mechanism in methylphenidate-induced hypophagia. In conclusion, our study illuminates a hindbrain DAergic circuit that controls feeding through dynamic regulation in satiety response and meal structure.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Eating* / physiology
  • Humans
  • Rats
  • Rats, Sprague-Dawley
  • Rhombencephalon
  • Satiation* / physiology
  • Weight Gain