Growth factor profile in calcified cartilage from the metaphysis of a calf costochondral junction, the site of initial bone formation

Biomed Rep. 2021 Jun;14(6):54. doi: 10.3892/br.2021.1430. Epub 2021 Apr 9.

Abstract

Endochondral bone formation is orchestrated by growth factors produced by chondrocytes and deposited in the cartilage matrix. Whilst some of these factors have been identified, the complete list and their relationship remains unknown. In the present study, the growth factors were isolated from non-calcified and calcified cartilage of costochondral junctions. Cartilage dissected from the ribs of 6-20-week-old calves was purchased from a local butcher within 24 h of the death of the animal. The isolation involved hyaluronidase digestion, guanidinium hydrochloride (GuHCl) extraction, HCl decalcification and GuHCl extraction of the decalcified matrix. Growth factors were purified by heparin chromatography and their quantities were estimated using ELISA. Decalcified cartilage was also used for protein sequence analysis (data are available via ProteomeXchange; ID, PXD021781). Bone morphogenetic protein-7 (BMP-7), growth/differentiation factor-5 (GDF-5) and NEL-like protein-1 (NELL-1), all known growth factors that stimulate bone formation, quantitatively accounted for the majority of the material obtained in all steps of isolation. Thus, cartilage serves as a store for growth factors. During initial bone formation septoclasts release osteoclastogenesis-stimulating factors deposited in non-calcified cartilage. Osteoclasts dissolve calcified cartilage and transport the released factors required for the stimulation of osteoprogenitor cells to deposit osteoid. High concentrations of BMP-7, GDF-5 and NELL-1 at the site of initial bone formation may suggest that their synergistic action favours osteogenesis.

Keywords: bone growth factors; calcified cartilage; endochondral bone formation; osteoclasts.

Grants and funding

Funding: This research was supported by the National Science Centre, Poland (grant no. 2016/21/B/NZ1/00289).