Format

Send to

Choose Destination
J Biol Chem. 1988 May 5;263(13):6240-8.

Human apolipoprotein E3 in aqueous solution. I. Evidence for two structural domains.

Author information

1
Gladstone Foundation Laboratories for Cardiovascular Disease, University of California, San Francisco 94140-0608.

Abstract

The stability and structure of human apolipoprotein (apo) E3 in aqueous solution were investigated by guanidine HCl denaturation and limited proteolysis. The guanidine HCl denaturation curve, as monitored by circular dichroism spectroscopy, was biphasic; the two transition midpoints occurred at 0.7 and 2.5 M guanidine HCl, indicating that there are stable intermediate structures in the unfolding of apoE. Limited proteolysis of apoE with five enzymes demonstrated two proteolytically resistant regions, an amino-terminal domain (residues 20-165) and a carboxyl-terminal domain (residues 225-299). The region between them was highly susceptible to proteolytic cleavage. Because of their similarity to the proteolytically resistant regions, the amino-terminal (residues 1-191) and carboxyl-terminal (residues 216-299) thrombolytic fragments of apoE were used as models for the two domains. Guanidine HCl denaturation of the carboxyl- and amino-terminal fragments gave transition midpoints of 0.7 and 2.4 M guanidine HCl, respectively. The results establish that the two domains identified by limited proteolysis correspond to the two domains detected by protein denaturation experiments. Therefore, the thrombolytic fragments are useful models for the two domains. The free energies of denaturation calculated from the denaturation curves of intact apoE or the model domains were approximately 4 and 8-12 kcal/mol for the carboxyl- and amino-terminal domains, respectively. The value for the carboxyl-terminal domain is similar to those of previously characterized apolipoproteins, whereas the value for the amino-terminal domain is considerably higher and resembles those of soluble globular proteins. These studies suggest that, in aqueous solution, apoE is unlike other apolipoproteins in that it contains two independently folded structural domains of markedly different stabilities: an amino-terminal domain and a carboxyl-terminal domain, separated by residues that may act as a hinge region.

PMID:
3360781
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center