Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 1988 Apr 25;969(2):176-84.

Requirement of the collagenous domain for carbohydrate processing and secretion of a surfactant protein, SP-A.

Author information

  • 1University of Cincinnati, College of Medicine, Department of Pediatrics, OH 45267-0541.


Two distinct intracellular forms of surfactant protein Mr = 35,000 (SP-A) were demonstrated in both purified type II epithelial cells and rat lung in vivo. High-mannose precursors of Mr = 30,000 and 34,000 comprised a significant fraction of intracellular SP-A in vivo and in vitro. A second intracellular pool was demonstrated in lamellar body enriched fractions, which contained endoglycosidase-H resistant, sialylated forms of SP-A. Intracellular transport and secretion of SP-A was not altered by inhibitors of carbohydrate processing. However, incubation of type II cells with alpha,alpha'-dipyridyl or cis-4-hydroxy-L-proline, agents which disrupt triple-helix formation within collagenous peptide domains, inhibited sialylation, intracellular transport to the lamellar body fraction and secretion. In the presence of either alpha,alpha'-dipyridyl or cis-4-hydroxy-L-proline, high mannose precursors accumulated intracellularly and were not secreted after 16-18 h. Thus, high-mannose precursors in proximal intracellular pool(s) and sialylated forms in lamellar body-enriched fractions represent two major intracellular storage forms of SP-A in vitro and in vivo. SP-A is routed by processes dependent upon the hydroxylation of the collagenous domain of the polypeptide. Transport and secretion of SP-A are not dependent upon the addition or processing of asparagine-linked carbohydrate.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center