Assessing human health risk of arsenic for rice consumption by an iron plaque based partition ratio model

Sci Total Environ. 2021 Apr 1:763:142973. doi: 10.1016/j.scitotenv.2020.142973. Epub 2020 Oct 15.

Abstract

A field experiment was conducted to study the transport and uptake of arsenic (As) from soil to rice roots and the subsequent translocation from roots to shoots and grains. Twelve rice cultivars were used in the field experiment. The amount of As accumulated in rice grains and sequestered by root iron plaque and rhizosphere soil, were determined to establish the relationship between As concentrations in brown rice and As sequestration by iron oxides. Human health risk was then assessed for Taiwan's population exposed to As through rice consumption. The result of this study showed that the mean total As concentrations in the experimental site and in brown rice were 93.02 mg/kg and 0.158 mg/kg, respectively. The As sequestration by iron oxides on root plaque (3.48-9.51) was higher than that of the rhizosphere soil (1.86-4.09) for all tested rice cultivars. Therefore, the partition ratio (PR) representing the relative tendency of As sequestration by rhizosphere soil to that in root iron plaque was all less than 1. In addition, there was a significant negative linear relationship between inorganic As concentration (iAs) in brown rice and PR value (r2 = 0.38, p < 0.05). Based on the iAs in brown rice, the median value of hazard quotient (HQ) and target cancer risk (TR) was 1.13 and 5.10 × 10-4, respectively, indicating potential cancer and non-cancer risk for Taiwan residents exposed to As through the consumption of rice grown on the studied site. Various PR values were then successfully used for estimating risk, implying that screening the PR of the rice plant before harvest could serve as an early warning signal for protecting consumers' health. However, more experiments with different rice cultivars for the paddy soils were suggested in the future to establish a comprehensive relationship between iAs in brown rice and PR value.

Keywords: Arsenic; Iron plaque; Rice; Risk.

MeSH terms

  • Arsenic* / analysis
  • Humans
  • Iron
  • Oryza*
  • Plant Roots / chemistry
  • Soil
  • Soil Pollutants* / analysis
  • Taiwan

Substances

  • Soil
  • Soil Pollutants
  • Iron
  • Arsenic