In vivo intervertebral kinematics and disc deformations of the human cervical spine during walking

Med Eng Phys. 2021 Jan:87:63-72. doi: 10.1016/j.medengphy.2020.11.010. Epub 2020 Nov 25.

Abstract

The kinematics of the cervical spine during various functional neck motions has been widely reported. However, no data has been reported on the cervical intervertebral kinematics during walking, the most frequently performed daily functional activity. In this study, we evaluated cervical kinematics and disc deformation of asymptomatic subjects during a gait cycle using a dual fluoroscopic imaging system. Our measurements showed that the vertical translation of the cervical spine (1.6 ± 0.1 Hz) occurred at twice the frequency of the gait cycle (0.8 ± 0.1 Hz). The overall ranges of motion (ROMs) of the entire (C2-T1) cervical spine were 5.0 ± 3.1° in the flexion-extension rotation, 3.4 ± 1.0° in the lateral-bending rotation, and 5.8 ± 2.1° in the axial-twisting rotation during walking. Each intervertebral disc (measured at the disc centre location) dynamically deformed in its axial direction in a range of 16.2 ± 5.7% ~ 23.7 ± 8.7% (without significant differences among different segment levels, p > 0.05), similar to the ranges of shear deformations of the same disc (p > 0.05, except for the C7-T1 disc, where p = 0.010). These data could be useful for improvements of diagnosis and treatment methods of cervical pathologies.

Keywords: Cervical spine; Disc deformation; Dual fluoroscopic imaging; Gait cycle; Human walking; Intervertebral motion.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomechanical Phenomena
  • Cervical Vertebrae / diagnostic imaging
  • Humans
  • Intervertebral Disc* / diagnostic imaging
  • Range of Motion, Articular
  • Rotation
  • Walking*