Send to

Choose Destination
Nature. 1988 Jan 28;331(6154):365-7.

A highly basic histone H4 domain bound to the sharply bent region of nucleosomal DNA.

Author information

Institute of Molecular Biology, Academy of Sciences, Moscow, USSR.


A nucleosomal core particle is composed of two each of histones H2A, H2B, H3 and H4 located inside the particle with approximately 47 base pairs (bp) of DNA wrapped around the octamer in about 1.8 turns of a left-handed superhelix. The path of the superhelix is not smooth; the DNA is sharply bent, or kinked, at positions symmetrically disposed at a distance of about one and four double-helical turns in both directions from the nucleosomal dyad axis (designated as sites +/- 1 and +/- 4 respectively). This non-uniform bending is considered archetypal to other DNA-protein complexes, but its mechanism is not clear (reviewed in ref. 4). DNA-histone chemical cross-linking within the core particle has revealed strong binding of each of the two histone H4 molecules to DNA at a distance of 1.5 helical turns either side of the nucleosomal dyad axis (sites +/- 1.5). In each of these sites, a single flexible domain of H4 was previously shown to contact three points, at about nucleotides 55 and 65 on one strand and nucleotide 88 on the complementary strand, numbering from the 5' terminus of each 147-base strand; these three locations are closely juxtaposed across the highly compressed minor and major grooves (Fig. 1). Here we report that the amino-acid residue of histone H4 cross-linked at the 1.5 site is histidine-18, embedded in a highly basic cluster Lys-Arg-His-Arg-Lys-Val-Leu-Arg which is probably involved in the sharp bending of the DNA double helix at the +/- 1 sites.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center