Bacterial Antifouling Characteristics of Helicene-Graphene Films

Nanomaterials (Basel). 2021 Jan 3;11(1):89. doi: 10.3390/nano11010089.

Abstract

Herein, we describe interfacially-assembled [7]helicene films that were deposited on graphene monolayer using the Langmuir-Schaefer deposition by utilizing the interactions of nonplanar (helicene) and planar (graphene) π-π interactions as functional antifouling coatings. Bacterial adhesion of Staphylococcus aureus on helicene-graphene films was noticeably lower than that on bare graphene, up to 96.8% reductions in bacterial adhesion. The promising bacterial antifouling characteristics of helicene films was attributed to the unique molecular geometry of helicene, i.e., nano-helix, which can hinder the nanoscale bacterial docking processes on a surface. We envision that helicene-graphene films may eventually be used as protective coatings against bacterial antifouling on the electronic components of clinical and biomedical devices.

Keywords: Langmuir-Schaefer; S. aureus; bacterial antifouling; helicene; thin film.