Fibrin-based scaffolds for dental pulp regeneration: from biology to nanotherapeutics

Eur Cell Mater. 2021 Jan 2:41:1-14. doi: 10.22203/eCM.v041a01.

Abstract

Tissue engineering-based endodontic therapies, designed to regenerate the dental pulp (DP) in the devitalised endodontic space, have been proposed to improve tooth longevity compared to conventional root-filling therapies. Their aim is to restore tooth vitality and major DP functions necessary to maintain tooth health such as immunosurveillance, sensitivity and healing/repair/regenerative capacities. Several formulations based on the use of fibrin, the main component of the blood clot matrix, recently gave valuable results in the regeneration of the human DP. This review describes recent fibrin-based scaffolds designed for that purpose. After having presented the various strategies for DP regeneration, the main fibrin-based scaffolds reported so far for clinical use in endodontics were reviewed. Particular emphasis was given to hydrogel devices that may be improved by incorporation of bioactive molecules that stimulate vascularisation and tissue neoformation or provide antibacterial properties. Data indicate that fibrin-based scaffolds constitute a highly favourable environment for mesenchymal stem cells, which is maintained upon functionalisation. Additional knowledge is needed to understand how fibrin and functionalising agents affect adhesion, survival, proliferation, migration and differentiation of cells incorporated in the scaffold or which will colonise it from neighbouring host tissues. This knowledge is needed to adapt the hydrogel formulation for various clinical conditions.

Publication types

  • Review

MeSH terms

  • Biology
  • Dental Pulp
  • Fibrin*
  • Humans
  • Regeneration
  • Tissue Engineering
  • Tissue Scaffolds*

Substances

  • Fibrin