Format

Send to

Choose Destination
Genetics. 1987 Nov;117(3):367-80.

A novel P22 prophage in Salmonella typhimurium.

Author information

1
Department of Biology, University of Utah, Salt Lake City 84112.

Abstract

Under several sets of conditions, all of which seem to perturb purine metabolism, Salmonella typhimurium releases a variety of phages which were not known to be present in the strain. These cryptic phages are not induced by UV irradiation. Furthermore, the induction process does not require a functional recA gene product. While phages of several phenotypic classes have been recovered, including both turbid and clear plaque formers, all appear to be variants of P22 because all show DNA restriction patterns indistinguishable from that of P22. The variety of types suggests that the cryptic prophage is mutagenized as a consequence of the induction process. All the temperature phages tested are capable of transducing a variety of chromosomal markers with high efficiency. The phages induced in this novel way are capable of forming plaques on the strains that gave rise to them. Since the strains releasing phage are not immune to P22, the parental lysogens must not express immunity and the phage must be held in a cryptic state by a novel mechanism. The released phage possess an intact P22 immunity system because many can form standard immune lysogens after reinfection of Salmonella. These results raise the possibility that Salmonella typhimurium harbors cryptic phages that are subject to a novel system of global control related to purine metabolism. Preliminary evidence suggests that the regulation system may involve DNA modification.

PMID:
3319766
PMCID:
PMC1203213
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center