Format

Send to

Choose Destination
Mutat Res. 1987 Aug;179(2):143-9.

Thermal resistance to photoreactivation of ultraviolet light induced mutations in the lacI gene of E. coli ung.

Abstract

Ultraviolet light (UV) induced mutations in the lacI gene of Escherichia coli are thought to be targeted by DNA photoproducts. A number of reports suggest that both cyclobutyl pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts may be involved. To investigate the potential contribution of each of these DNA photoproducts to mutagenesis in the lacI gene, we held UV-irradiated cells at a temperature of 44 degrees C for 75 min and then exposed them to photoreactivating light (PR). This protocol is expected to preferentially deaminate specifically those cytosines that are contained in cyclobutyl dimers and subsequently monomerize the dimers to yield uracils in the DNA. In a strain deficient for uracil-DNA glycosylase (Ung-), these uracils would not be removed and a G:C----A:T transition would result at the site of the dimer. This protocol resulted in the enhancement of amber nonsense mutations that result from transitions at potential cytosine-containing dimer sites. The enhanced mutation frequencies resulting from this procedure were used to estimate the probability of dimer formation at the individual sites. A comparison of the dimer distribution with the mutation frequencies following UV alone suggests that both cyclobutyl dimers and (6-4) photoproducts contribute to UV-mutagenesis in the lacI gene. In addition, we conclude that the frequency of mutation at any particular site not only reflects the occurrence of DNA damage, but also the action of metabolic processes that are responsible for DNA repair and mutagenesis.

PMID:
3302690
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center