Lactobacillus fermentum CQPC06 in naturally fermented pickles prevents non-alcoholic fatty liver disease by stabilizing the gut-liver axis in mice

Food Funct. 2020 Oct 21;11(10):8707-8723. doi: 10.1039/d0fo01823f.

Abstract

Herein, we used a HFD/F to induce NAFLD in mice and intervened with CQPC06 to determine the preventive effect of CQPC06 on NAFLD and its potential regulatory mechanism. C57BL/6J mice were fed with LFD, HFD/F, HFD/F supplemented with CQPC06, and HFD/F supplemented with LDBS for 8 weeks to test the properties of the probiotic. Biochemical and molecular biology methods were used to determine the levels of related indexes in mouse serum, liver tissue, epididymal fat, small intestine tissue, and feces. The results showed that CQPC06 exhibited satisfactory probiotic properties, significantly inhibited mouse weight gain, and decreased the liver index and serum lipid levels, including ALT, AKP, AST, TC, TG, LDL-C, LPS, and HDL-C levels. The HOMA-IR index calculated based on the blood glucose levels and serum insulin levels showed that the HOMA-IR index of NAFLD mice treated with CQPC06 significantly decreased. From the molecular biology level, CQPC06 significantly increased the mRNA and protein expression of PPAR-α, CYP7A1, CPT1, and LPL in NAFLD mouse livers, and decreased the expression of PPAR-γ and C/EBP-α. Furthermore, CQPC06 enhanced the expression of ZO-1, occludin, and claudin-1 in the small intestine of NAFLD mice, and decreased the expression of CD36. CQPC06 decreased the level of Firmicutes and increased the levels of Bacteroides and Akkermansia in the feces of NAFLD mice, and the ratio of Firmicutes/Bacteroides was significantly decreased. CQPC06 is highly resistant in vitro and survived in the gastrointestinal tract and exerted its probiotic effect, altered the intestinal microecology of NAFLD mice, and played an important role in NAFLD prevention through the unique anatomical advantages of the gut-liver axis. There was a clear preventive effect with high concentrations of CQPC06 and it was stronger than that of l-carnitine.

MeSH terms

  • Animals
  • Cucumis sativus / microbiology*
  • Diet, High-Fat / adverse effects
  • Disease Models, Animal
  • Feces / microbiology
  • Fermented Foods / microbiology*
  • Fixatives
  • Gastrointestinal Microbiome / physiology
  • Limosilactobacillus fermentum*
  • Lipids / blood
  • Liver / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Non-alcoholic Fatty Liver Disease / etiology
  • Non-alcoholic Fatty Liver Disease / prevention & control*
  • PPAR alpha / metabolism
  • Probiotics / pharmacology*

Substances

  • Fixatives
  • Lipids
  • PPAR alpha