Format

Send to

Choose Destination
Diabetologia. 1988 May;31(5):285-90.

Artificial induction of intravascular lipolysis by lipid-heparin infusion leads to insulin resistance in man.

Author information

1
Department of Internal Medicine, College of Medicine, Seoul National University, South Korea.

Abstract

Although extensive evidence indicates that free fatty acids can decrease glucose utilization in vitro, it is still controversial how an increase in lipolysis affects glucose metabolism in man. To test the hypothesis that an increase in lipolysis is related to insulin resistance, we examined the effect of lipid-heparin infusion on glucose metabolism in ten normal subjects by the euglycaemic glucose clamp technique and isotopic determination of glucose turnover. In the control euglycaemic clamp studies with insulin infusion at 0.2 and 1.0 mU.kg-1.min-1, endogenous glucose production was suppressed from the basal rate of 2.0 +/- 0.3 mg.kg-1min-1 to 1.1 +/- 0.7 mg.kg-1.min-1 and -0.4 +/- 0.7 mg.kg-1min-1 respectively. Glucose utilization increased from the basal rate of 2.0 +/- 0.3 mg.kg-1min-1 to 2.3 +/- 0.5 mg.kg-1min-1 and 5.9 +/- 1.8 mg.kg-1min-1 respectively. When the euglycaemic clamp studies were coupled with lipid-heparin infusion at comparable low and high rates of insulin infusion, endogenous glucose production increased (1.8 +/- 0.7 mg.kg-1.min-1, p less than 0.001, and 0.3 +/- 0.6 mg.kg-1.min-1, p less than 0.05, respectively), and glucose utilization decreased (2.1 +/- 0.3 mg.kg-1.min-1, not significant, and 3.2 +/- 0.7 mg.kg-1.min-1, p less than 0.001 respectively). These data suggest that the artificial induction of intravascular lipolysis by lipid-heparin infusion leads to a state of insulin resistance in man.

PMID:
3294068
DOI:
10.1007/bf00277409
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center