Format

Send to

Choose Destination
Biochemistry. 1988 Feb 23;27(4):1205-12.

Properties of the high-affinity single-stranded DNA binding state of the Escherichia coli recA protein.

Author information

1
Department of Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611.

Abstract

The properties of the high-affinity single-stranded DNA (ssDNA) binding state of Escherichia coli recA protein have been studied. We find that all of the nucleoside triphosphates that are hydrolyzed by recA protein induce a high-affinity ssDNA binding state. The effect of ATP binding to recA protein was partially separated from the ATP hydrolytic event by substituting calcium chloride for magnesium chloride in the binding buffer. Under these conditions, the rate of ATP hydrolysis is greatly inhibited. ATP increases the affinity of recA protein for ssDNA in a concentration-dependent manner in the presence of both calcium and magnesium chloride with apparent Kd values of 375 and 500 microM ATP, respectively. Under nonhydrolytic conditions, the molar ratio of ATP to ADP has an effect on the recA protein ssDNA binding affinity. Over an ATP/ADP molar ratio of 2-3, the affinity of recA protein for ssDNA shifts cooperatively from a low-to a high-affinity state.

PMID:
3284580
DOI:
10.1021/bi00404a021
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center