Send to

Choose Destination
Nature. 1988 May 5;333(6168):93-6.

Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic beta cell via two distinct site-specific endopeptidases.

Author information

Department of Clinical Biochemistry, University of Cambridge, UK.


Insulin is produced from an inactive precursor, proinsulin, through initial endoproteolytic cleavage at sites marked by pairs of basic amino-acid residues. We report here that lysates of insulin secretory granules contain two distinct Ca-dependent acidic endoproteases; one (type I) cleaving exclusively on the C-terminal side of Arg 31.Arg 32 (B-chain/C-peptide junction), the other (type II) preferentially on the C-terminal side of Lys 64.Arg 65 of proinsulin (C-peptide/A-chain junction). The Ca and pH requirements of these proteinases suggested that the type-II proteinase would be active in the Golgi apparatus and the secretory granule, whereas type-I activity would be compatible only with the intragranular environment. Kinetic analyses of (pro)insulin conversion intermediates in [35S]methionine-pulsed rat islets support this supposition. Our results suggest a simple mechanism whereby different dibasic sites can be cleaved in different cellular compartments. In conjunction with the regulation of the ionic composition of such compartments and the operation of post-Golgi segregation, our results also suggest how proteolytic conversion of diverse proproteins destined for different cellular sites can occur differentially and in a regulated manner.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center