TLD1433-Mediated Photodynamic Therapy with an Optical Surface Applicator in the Treatment of Lung Cancer Cells In Vitro

Pharmaceuticals (Basel). 2020 Jun 28;13(7):137. doi: 10.3390/ph13070137.

Abstract

Intra-operative photodynamic therapy (IO-PDT) in combination with surgery for the treatment of non-small cell lung cancer and malignant pleural mesothelioma has shown promise in improving overall survival in patients. Here, we developed a PDT platform consisting of a ruthenium-based photosensitizer (TLD1433) activated by an optical surface applicator (OSA) for the management of residual disease. Human lung adenocarcinoma (A549) cell viability was assessed after treatment with TLD1433-mediated PDT illuminated with either 532- or 630-nm light with a micro-lens laser fiber. This TLD1433-mediated PDT induced an EC50 of 1.98 μM (J/cm2) and 4807 μM (J/cm2) for green and red light, respectively. Cells were then treated with 10 µM TLD1433 in a 96-well plate with the OSA using two 2-cm radial diffusers, each transmitted 532 nm light at 50 mW/cm for 278 s. Monte Carlo simulations of the surface light propagation from the OSA computed light fluence (J/cm2) and irradiance (mW/cm2) distribution. In regions where 100% loss in cell viability was measured, the simulations suggest that >20 J/cm2 of 532 nm was delivered. Our studies indicate that TLD1433-mediated PDT with the OSA and light simulations have the potential to become a platform for treatment planning for IO-PDT.

Keywords: PDT; TLD1433; intra-operative photodynamic therapy; light simulation; optical surface applicator.