Format

Send to

Choose Destination
Dev Biol. 1988 Jun;127(2):304-15.

Ductal morphogenesis in the mouse mammary gland: evidence supporting a role for epidermal growth factor.

Author information

1
Department of Biology, University of California, Santa Cruz 95064.

Abstract

Epidermal growth factor (EGF) is a potent mitogen for a variety of cells in vitro, but studies on its effects in vivo and its possible role as a natural growth regulator are few. Using slow-release plastic implants, capable of delivering EGF to small regions of the gland over a period of several days, we have shown that EGF reinitiated ductal growth and morphogenesis in growth-static glands of ovariectomized mice. The effects of implanted EGF were confined to the zone around the implant and were time and dose dependent. Unimplanted glands in the same animal were unaffected. Local effects included (1) the formation of new ductal growth points (end buds), (2) the restoration of normal end bud histomorphology and the reappearance of a stem (cap) cell layer, (3) the reinitiation of epithelial DNA synthesis, and (4) an increase in ductal diameter. No lobulo-alveolar or hyperplastic growth was seen. Competitive binding assays and autoradiography were used to characterize EGF receptor activity in growing and static glands. High and low affinity receptors were demonstrated in each tissue, while 125I-EGF autoradiography revealed differential, specific binding of the ligand to certain epithelial and stromal elements. In the epithelium, label was concentrated in the cap cells of the end buds and in myoepithelial cells of the mammary ducts. Stromal cell label was heaviest adjacent to the epithelium in the end bud flank and subtending ducts, suggesting the induction of stromal EGF receptors by mammary epithelium. Because exogenous EGF is both a mitogenic and morphogenetic factor in this tissue and can serve as a locally acting substitute for known systemic mammogens such as estrogen and prolactin, it must be considered a strong candidate for a naturally occurring mammary tissue mitogen.

PMID:
3259938
DOI:
10.1016/0012-1606(88)90317-x
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center