Asymmetry of peripheral vascular biomarkers in ischemic stroke patients, assessed using NIRS

J Biomed Opt. 2020 Jun;25(6):1-16. doi: 10.1117/1.JBO.25.6.065001.

Abstract

Significance: Low-frequency oscillations (LFOs) ranging from 0.01 to 0.15 Hz are common in functional imaging studies. Some of these LFOs are non-neuronal and are correlated with autonomic physiological processes.

Aim: We investigate the relationships between systemic low-frequency oscillations (sLFOs) measured at different peripheral sites during resting states in ischemic stroke patients.

Approach: Twenty-seven ischemic stroke patients (ages 44 to 90; 20 male and 7 female) were recruited for the study. During the experiments, fluctuations in oxyhemoglobin concentration were measured in the left and right toes, fingertips, and earlobes using a multichannel near-infrared spectroscopy instrument. We applied cross-correlation and frequency component analyses on the sLFO data.

Results: The results showed that embolization broke the symmetry of the sLFO transmission and that the damage was not limited to the local area but spread throughout the body. Among six peripheral sites, the power spectrum width of the earlobes was significantly larger than that of the fingers and toes. This indicates that the earlobes may contain more physiological information. Finally, the results of fuzzy clustering verified that sLFOs can serve as perfusion biomarkers to differentiate stroke from healthy subjects.

Conclusions: The high correlation values and corresponding delays in sLFOs support the hypothesis that (1) the correlation characteristics of sLFOs in stroke patients are different from those of healthy subjects. These characteristics can reflect patient condition, to an extent. Embolization in ischemic stroke patients breaks the symmetry of the body's sLFO transmission, disrupting the balance of blood circulation. (2) sLFOs can be used as perfusion biomarkers to differentiate ischemic stroke patients from healthy subjects. Studying these signals can explicate the overall feedback/influence of pericentral interactions. Finally, peripheral sLFOs have been shown to be an effective and accurate tool for assessing peripheral blood circulation and vascular integrity in ischemic stroke patients.

Keywords: near-infrared spectroscopy; peripheral artery disease; resting state; stroke; systemic low-frequency oscillations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Biomarkers
  • Brain
  • Brain Ischemia* / diagnostic imaging
  • Female
  • Humans
  • Ischemic Stroke*
  • Male
  • Middle Aged
  • Stroke* / diagnostic imaging

Substances

  • Biomarkers