On the design and properties of porous femoral stems with adjustable stiffness gradient

Med Eng Phys. 2020 Jul:81:30-38. doi: 10.1016/j.medengphy.2020.05.003. Epub 2020 May 16.

Abstract

There is a large gap between the elastic modulus of the existing femoral stem and the host bone. This gap can lead to long-term complications, such as aseptic loosening and, eventually, a need for revision surgery. The porous metallic biomimetic femoral stem can effectively reduce stress shielding and provide firm implant fixation through bone ingrowth. The purpose of this research is to investigate the application of different porous femoral stems in relieving bone resorption and promoting osseointegration by finite element analysis. We present an intuitive visualization method based on a diamond lattice structure to understand the relationship between pore size, porosity, bone ingrowth criteria and additive manufacturing constraints. We further obtain an admissible design space of diamond lattice structure for porosity selection. We evaluate the relative micromotion of bone-implant interface and bone volume with density loss for three femoral stems with diamond lattice-based homogenous porous structures in admissible design space. We also evaluate porous femoral stems with four different grading orientations along the axial and radial directions of the femoral stem. These include an axial graded femoral stem with a porosity increased distally (DAGS), an axial graded femoral stem with a porosity increased proximally (PAGS), a radial graded femoral stem with a porosity increased inwardly (IRGS), and a radial graded femoral stem with a porosity increased externally (ERGS). The results indicate that: (i) homogenous porous femoral stems with 40% porosity, (ii) DAGS and (iii) IRGS can maintain the relative micromotion of the bone-implant interface in the safety range for bone ingrowth. The calculated volumes of bone with density loss in the cases of DAGS and IRGS are 3.6% and 3.3%, respectively, which are nearly 74% lower than that of fully dense stems. Therefore, DAGS and IRGS have an evident advantage in promoting osseointegration and relieving bone resorption. Thus, the graded femoral stem is more promising than the homogeneous porous stem.

Keywords: Graded material; Porous femoral stem; Relative micromotion; Stress shielding; Total hip arthroplasty.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arthroplasty, Replacement, Hip
  • Elastic Modulus*
  • Femur* / surgery
  • Hip Prosthesis
  • Humans
  • Motion
  • Osseointegration
  • Porosity
  • Prosthesis Design*