Spirometric traits show quantile-dependent heritability, which may contribute to their gene-environment interactions with smoking and pollution

PeerJ. 2020 May 15:8:e9145. doi: 10.7717/peerj.9145. eCollection 2020.

Abstract

Background: "Quantile-dependent expressivity" refers to a genetic effect that is dependent upon whether the phenotype (e.g., spirometric data) is high or low relative to its population distribution. Forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and the FEV1/FVC ratio are moderately heritable spirometric traits. The aim of the analyses is to test whether their heritability (h2 ) is constant over all quantiles of their distribution.

Methods: Quantile regression was applied to the mean age, sex, height and smoking-adjusted spirometric data over multiple visits in 9,993 offspring-parent pairs and 1,930 sibships from the Framingham Heart Study to obtain robust estimates of offspring-parent (βOP), offspring-midparent (βOM), and full-sib regression slopes (βFS). Nonparametric significance levels were obtained from 1,000 bootstrap samples. βOPs were used as simple indicators of quantile-specific heritability (i.e., h 2 = 2βOP/(1+rspouse), where rspouse was the correlation between spouses).

Results: βOP ± standard error (SE) decreased by 0.0009 ± 0.0003 (P = 0.003) with every one-percent increment in the population distribution of FEV1/FVC, i.e., βOP ± SE were: 0.182 ± 0.031, 0.152 ± 0.015; 0.136 ± 0.011; 0.121 ± 0.013; and 0.099 ± 0.013 at the 10th, 25th, 50th, 75th, and 90th percentiles of the FEV1/FVC distribution, respectively. These correspond to h2 ± SEs of 0.350 ± 0.060 at the 10th, 0.292 ± 0.029 at the 25th, 0.262 ± 0.020 at the 50th, 0.234 ± 0.025 at the 75th, and 0.191 ± 0.025 at the 90th percentiles of the FEV1/FVC ratio. Maximum mid-expiratory flow (MMEF) h2 ± SEs increased 0.0025 ± 0.0007 (P = 0.0004) with every one-percent increment in its distribution, i.e.: 0.467 ± 0.046, 0.467 ± 0.033, 0.554 ± 0.038, 0.615 ± 0.042, and 0.675 ± 0.060 at the 10th, 25th, 50th, 75th, and 90th percentiles of its distribution. This was due to forced expiratory flow at 75% of FVC (FEF75%), whose quantile-specific h2 increased an average of 0.0042 ± 0.0008 for every one-percent increment in its distribution. It is speculated that previously reported gene-environment interactions may be partially attributable to quantile-specific h2 , i.e., greater heritability in individuals with lower FEV1/FVC due to smoking or airborne particles exposure vs. nonsmoking, unexposed individuals.

Conclusion: Heritabilities of FEV1/FVC, MMEF, and FEF75% from quantile-regression of offspring-parent and sibling spirometric data suggest their quantile-dependent expressivity.

Keywords: COPD; Forced vital capacity; Gene environment interaction; Heritability; Pollution; Pulmonary function; Quantile dependent expressivity; SERPINA1; Smoking; Spirometric data.

Grants and funding

This research was supported by grants R21ES020700 and from the National Heart, Lung, and Blood Institute and an unrestricted gift from Hoka One One. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.