Format

Send to

Choose Destination
Differentiation. 1988 Dec;39(2):123-30.

Selective stimulation of in vitro limb-bud chondrogenesis by retinoic acid.

Author information

1
Department of Anatomy, Morehouse School of Medicine, Atlanta, GA 30310.

Abstract

Embryonic exposure to pharmacologic doses of vitamin A analogs (retinoids) is a well-known cause of limb-skeletal deletions, limb truncation and other skeletal malformations. The exclusively inhibitory effect of retinoic acid (RA) on chondrogenesis in standard serum-containing cultures of limb-bud mesenchymal cells is equally well known and has provided a means to explore the cellular basis for RA-mediated skeletal teratogenesis. Recent studies showing that lower RA concentrations can cause skeletal duplication when applied directly to the anterior border of a developing limb, suggest that RA may have a role in normal limb development as a diffusible morphogen capable of regulating skeletal pattern. While RA treatment causes both, skeletal deletions and duplications are clearly different (if not opposing) effects, the latter of which is difficult to reconcile with RA's heretofore exclusively inhibitory effect on in vitro chondrogenesis. In the present study. RA's effects on chondrogenesis and myogenesis were examined in serum-free cultures of chick limb-bud mesenchymal cells and compared with its effects on similar cultures grown in serum-containing medium. When added to serum-free medium, concentrations of RA known to cause skeletal duplication in vivo dramatically enhanced in vitro chondrogenesis (to over 200% of control values) as judged by both Alcian-blue staining and [35S]sulfate incorporation, while having little effect on myogenesis. Higher concentrations inhibited both chondrogenesis and myogenesis. The results indicate that at physiological concentrations. RA can selectively modulate chondrogenic expression and suggest that at higher concentrations, RA's inhibitory effects are less specific.(ABSTRACT TRUNCATED AT 250 WORDS).

PMID:
3243383
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center