In Silico Discovery of Candidate Drugs against Covid-19

Viruses. 2020 Apr 6;12(4):404. doi: 10.3390/v12040404.

Abstract

Previous studies reported that Angiotensin converting enzyme 2 (ACE2) is the main cell receptor of SARS-CoV and SARS-CoV-2. It plays a key role in the access of the virus into the cell to produce the final infection. In the present study we investigated in silico the basic mechanism of ACE2 in the lung and provided evidences for new potentially effective drugs for Covid-19. Specifically, we used the gene expression profiles from public datasets including The Cancer Genome Atlas, Gene Expression Omnibus and Genotype-Tissue Expression, Gene Ontology and pathway enrichment analysis to investigate the main functions of ACE2-correlated genes. We constructed a protein-protein interaction network containing the genes co-expressed with ACE2. Finally, we focused on the genes in the network that are already associated with known drugs and evaluated their role for a potential treatment of Covid-19. Our results demonstrate that the genes correlated with ACE2 are mainly enriched in the sterol biosynthetic process, Aryldialkylphosphatase activity, adenosylhomocysteinase activity, trialkylsulfonium hydrolase activity, acetate-CoA and CoA ligase activity. We identified a network of 193 genes, 222 interactions and 36 potential drugs that could have a crucial role. Among possible interesting drugs for Covid-19 treatment, we found Nimesulide, Fluticasone Propionate, Thiabendazole, Photofrin, Didanosine and Flutamide.

Keywords: bioinformatics; covid-19; drugs; gene network.

MeSH terms

  • Angiotensin-Converting Enzyme 2
  • Anti-Inflammatory Agents / pharmacology
  • Anti-Inflammatory Agents / therapeutic use
  • Antiviral Agents* / pharmacology
  • Antiviral Agents* / therapeutic use
  • Betacoronavirus / drug effects
  • COVID-19
  • COVID-19 Drug Treatment
  • Computational Biology
  • Computer Simulation
  • Coronavirus Infections / drug therapy*
  • Coronavirus Infections / virology
  • Databases, Genetic
  • Drug Discovery*
  • Gene Expression Profiling
  • Gene Regulatory Networks
  • Humans
  • Lung / enzymology*
  • Pandemics
  • Peptidyl-Dipeptidase A / genetics
  • Peptidyl-Dipeptidase A / metabolism*
  • Pneumonia, Viral / drug therapy*
  • Pneumonia, Viral / virology
  • Protein Interaction Mapping
  • Receptors, Coronavirus
  • Receptors, Virus / genetics
  • Receptors, Virus / metabolism*
  • SARS-CoV-2

Substances

  • Anti-Inflammatory Agents
  • Antiviral Agents
  • Receptors, Coronavirus
  • Receptors, Virus
  • Peptidyl-Dipeptidase A
  • ACE2 protein, human
  • Angiotensin-Converting Enzyme 2