Send to

Choose Destination
Genome Biol Evol. 2020 Mar 20. pii: evaa055. doi: 10.1093/gbe/evaa055. [Epub ahead of print]

Comparative and evolutionary genomics of isolates provide insight into the pathoadaptation of Aeromonas.

Author information

Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, University of Montpellier, Montpellier, France.
Laboratoire de Bactériologie, Hôpitaux universitaires de Strasbourg, Strasbourg, France.
National Academy of Sciences, National Research Council, Postdoctoral Research Associate, US Naval Research Laboratory, Washington, District of Columbia, USA.
Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA.
Département de Bactériologie, CHU de Nice, Nice, France.
Département d'Hygiène Hospitalière, CHRU de Montpellier, Montpellier, France.


Aeromonads are ubiquitous aquatic bacteria that cause opportunistic infections in humans, but their pathogenesis remains poorly understood. A pathogenomic approach was undertaken to provide insights into the emergence and evolution of pathogenic traits in aeromonads. The genomes of 64 Aeromonas strains representative of the whole genus were analysed to study the distribution, phylogeny and synteny of the flanking sequences of 13 virulence-associated genes. The reconstructed evolutionary histories varied markedly depending on the gene analysed and ranged from vertical evolution, which followed the core genome evolution (alt and colAh), to complex evolution, involving gene loss by insertion sequence-driven gene disruption, horizontal gene transfer and paraphyly with some virulence genes associated with a phylogroup (aer, ser, and type 3 secretion system components) or no phylogroup (type 3 secretion system effectors, Ast, ExoA, and RtxA toxins). The general pathogenomic overview of aeromonads showed great complexity with diverse evolution modes and gene organization and uneven distribution of virulence genes in the genus; the results provided insights into aeromonad pathoadaptation, or the ability of members of this group to emerge as pathogens. Finally, these findings suggest that aeromonad virulence-associated genes should be examined at the population level and that studies performed on type or model strains at the species level cannot be generalized to the whole species.


Aeromonas ; evolution; genomes; opportunistic pathogens; pathoadaptation; pathogenomics

Free full text

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center