Format

Send to

Choose Destination
Clin Infect Dis. 2020 Mar 9. pii: ciaa237. doi: 10.1093/cid/ciaa237. [Epub ahead of print]

In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).

Author information

1
Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China.
2
MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.
3
Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China.
4
Department of Orthopedics, Peking University Third Hospital, Beijing, China.
5
Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China.

Abstract

BACKGROUND:

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) first broke out in Wuhan (China) and subsequently spread worldwide. Chloroquine has been sporadically used in treating SARS-CoV-2 infection. Hydroxychloroquine shares the same mechanism of action as chloroquine, but its more tolerable safety profile makes it the preferred drug to treat malaria and autoimmune conditions. We propose that the immunomodulatory effect of hydroxychloroquine also may be useful in controlling the cytokine storm that occurs late-phase in critically ill SARS-CoV-2 infected patients. Currently, there is no evidence to support the use of hydroxychloroquine in SARS-CoV-2 infection.

METHODS:

The pharmacological activity of chloroquine and hydroxychloroquine was tested using SARS-CoV-2 infected Vero cells. Physiologically-based pharmacokinetic models (PBPK) were implemented for both drugs separately by integrating their in vitro data. Using the PBPK models, hydroxychloroquine concentrations in lung fluid were simulated under 5 different dosing regimens to explore the most effective regimen whilst considering the drug's safety profile.

RESULTS:

Hydroxychloroquine (EC50=0.72 μM) was found to be more potent than chloroquine (EC50=5.47 μM) in vitro. Based on PBPK models results, a loading dose of 400 mg twice daily of hydroxychloroquine sulfate given orally, followed by a maintenance dose of 200 mg given twice daily for 4 days is recommended for SARS-CoV-2 infection, as it reached three times the potency of chloroquine phosphate when given 500 mg twice daily 5 days in advance.

CONCLUSIONS:

Hydroxychloroquine was found to be more potent than chloroquine to inhibit SARS-CoV-2 in vitro.

KEYWORDS:

Chloroquine; Hydroxychloroquine; SARS-CoV-2

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center